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In this study, an undamped Du$ng's oscillator equation with time-dependent parameters
has been considered. The time-varying part is expanded in a series of ultraspherical
polynomials in the spirit of Sinha and Chou and only the constant part is retained. The
non-linearity parameter is assumed to be small so that the number of iterations required is
only two. The results compare well with those obtained by the Runge}Kutta fourth order
method.
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1. INTRODUCTION

In this study an undamped Du$ng's oscillator with time-dependent parameters has been
considered. The time-varying part is expanded in ultraspherical polynomials as in Sinha
and Chou, and only the constant term is retained. The resulting equation is solved using the
perturbation method [1]. The non-linearity parameter is assumed to be small, so that only
two iterations are enough. The results have been compared with those obtained by the
Runge}Kutta fourth order numerical integration method, and the agreement between the
two is good. The present work deals with periodic coe$cients only.

2. ANALYSIS

Consider the following Du$ng's oscillator equation with time-dependent parameters:
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Thus, in subinterval ¹M
k
, equation (1) becomes
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equation (6) becomes
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Substituting equation (7) into equation (11) yields
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Simplifying the above equation, we get

xK
k
#A

k01
x
k
"z

1
cos 3A1@2

k01
t#z

2
sin 3A1@2

k01
t#z

3
cos 2A1@2

k01
t#z

4
sin 2A1@2

k01
t

#z
5
cosA1@2

k01
t#z

6
sin A1@2

k01
t#Force!term, (13)

where

z
1
"!e

k0A
a3

4
!

3b2a

4 B ,

z
2
"!e

k0A!
b3

4
#

3a2b

4 B ,

z
3
"!e

k0 A
3a2F

1
2A

k01

!

3b2F
1

2A
k01
B ,

z
4
"!e

k0A
3abF

1
A

k01
B ,

z
5
"!e

k0A
3a3

4
#

3b2a

4
#

3aF2
1

A2
k01

#

(A
k0
!A

k01
)a

e
k0

B ,

z
6
"!e

k0A
3b3

4
#

3a2b

4
#

3bF2
1

A2
k01

#

(A
k0
!A

k01
)b

e
k0

B ,

Force!term"!A
(A

k0
!A

k01
)

A
k01

BF
1
#F

1
!

3e
k0

2A
k01

a2F
1
!

3e
k0

2A
k01

b2F
1

!

e
k0

A3
k01

F3
1
. (14)

In order to avoid resonance, the coe$cients of cos A1@2
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Then the solution to equation (13) is given by
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Thus the solution for the interval ¹M
k
is obtained. The solution for the complete time interval

[0, ¹] is obtained using the solutions of successive intervals.



TABLE 1

Results of the solution of Du.ng1s oscillator equation with time-dependent parameters

Sr. number A
k0

e
k0

a b c
1

c
2

¹M
k

1 0)7380 0)2409 1)000 0)000 0)992 0)000 0, 0)6
1)0721 0)1887 0)977 0)062 0)948 0)134 0)6, 1)2
1)3142 0)1509 0)893 0)193 0)859 0)242 1)2, 1)8
1)1556 0)1756 0)970 0)099 0)919 0)175 1)8, 2)4

2 0)7380 0)2409 0)323 0)000 0)411 0)000 0, 0)6
1)0721 0)1887 0)499 0)107 0)513 0)157 0)6, 1)2
1)3142 0)1509 0)486 0)244 0)465 0)286 1)2, 1)8
1)1556 0)1756 0)576 0)143 0)538 0)220 1)8, 2)4

3 0)7380 0)2409 1)000 0)000 0)993 0)000 0, 0)6
1)0721 0)1887 0)972 0)081 0)941 0)156 0)6, 1)2
1)3142 0)1509 0)889 0)210 0)842 0)273 1)2, 1)8
1)1556 0)1756 0)969 0)115 0)909 0)202 1)8, 2)4

4 0)7380 0)2409 0)323 0)000 0)399 0)000 0, 0)6
1)0721 0)1887 0)495 0)118 0)511 0)170 0)6, 1)2
1)3142 0)1509 0)485 0)252 0)455 0)307 1)2, 1)8
1)1556 0)1756 0)579 0)152 0)535 0)239 1)8, 2)4

Figure 1. Displacement (x) versus time (t) of xK#(1!0)32 cos 2t)x#(0)2#0)05 cos 2t)x3"0. Runge-Kutta
method } }}; Sinha's method **.
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Table 1 gives some of the details of the systems studied. Figures 1}5 show the results for
the following systems:

(1) xK#(1!0)32 cos 2t)x#(0)2#0)05 cos 2t)x3"0,

x"1, xR "0 at t"0.

(2) xK#(1!0)32 cos 2t)x#(0)2#0)05 cos 2t)x3"0)5,

x"1, xR "0 at t"0

(3) xK#(1!0)32 cos 2t)x#0)2x3"0,

x"1, xR "0 at t"0.



Figure 2. Displacement (x) versus time (t) of xK#(1!0)32 cos 2t)x#(0)2#0)05 cos 2t)x3"0)5. Runge-Kutta
method } }}; Sinha's method **.

Figure 3. Displacement (x) versus time (t) of xK#(1!0)32 cos 2t)x#0)2x3"0. Runge-Kutta method } } };
Sinha's method **.
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(4) xK#(1!0)32 cos 2t)x#0)2x3"0)5,

x"1, xR "0 at t"0.

(5) xK#x#0)2x3"0)5,

x"1, xR "0 at t"0.

3. RESULTS AND DISCUSSION

In the study, the method proposed by Sinha and Chou [2] has been combined with the
method of perturbation to obtain the response of Du$ng's oscillator with time-varying
parameters. The results obtained by the approximate method and the Runge}Kutta fourth
order method are in good agreement. The value of j can be chosen between 1 and 1000, but



Figure 4. Displacement (x) versus time (t) of xK#(1!0)32 cos 2t)x#0)2x3"0)5. Runge-Kutta method } } };
Sinha's method **.

Figure 5. Displacement (x) versus time (t) of xK#x#0)2x3"0)5. Runge-Kutta method } } }; Sinha's
method . . . . .
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there is no criterion for choosing the optimum value of j. The accuracy of the solution can
be improved by reducing the interval size and adjusting the value of j. The results for
F
1
"0, shown in Figures 1 and 3, are in better agreement than those for F

1
"0)5, shown in

Figures 2 and 4. In Figure 5 results agree well where F
1
"0)5. Hence, it can be concluded

that the errors in Figures 2 and 4 are due to the constant approximation.
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